
SOS Supplemental Materials

Blair C. Armstrong
Department of Psychology and

Center for the Neural Basis of Cognition
Carnegie Mellon University

Christine E. Watson
Department of Neurology and

Center for Cognitive Neuroscience
University of Pennsylvania

David C. Plaut
Department of Psychology and

Center for the Neural Basis of Cognition
Carnegie Mellon University

Abstract
This document provides a detailed overview of the main steps involved in an SOS
optimization. This may be relevant both for readers who are unfamiliar with opti-
mization procedures and for readers interested in taking full advantage of the spe-
cific characteristics of the SOS algorithm when designing and running their own
optimizations. Additional information and materials, including a tutorial which ap-
plies many of the principles described herein, may be found in the main SOS article
and at http://sos.cnbc.cmu.edu.



SOS SUPPLEMENTAL MATERIALS 2

DETAILED OVERVIEW OF THE MAIN STEPS IN AN SOS
OPTIMIZATION

Step 1: Defining the experimental conditions

The first step is defining the experimental conditions (different samples of items) in the de-
sign. For example, if the purpose of the experiment is to study the effects of word frequency, this
could involve creating low- and high-frequency conditions.

Step 2: Specifying constraints and penalties for violating the constraints

Once the experimental conditions have been determined, constraints must be constructed
to establish the desired relationships between the different variables, both across and within these
conditions. Constraints often consist of a desire to maximize differences on the variables of interest
while minimizing differences on confounding variables. For instance, if one were studying the
effects of word frequency, the primary constraint might be that two groups of words have different
mean frequency values (i.e., low- and high-frequency conditions). A second constraint might be
that the two groups are minimally different in word length.

The issue of assessing how well constraints have been satisfied is more substantial. The basic
idea consists of defining a cost or penalty for violations of the constraint. Greater violations lead
to increased costs and smaller violations to reduced costs. In the case of manually selecting items,
a researcher is assumed to derive these kinds of measures implicitly. In SOS, a cost penalty is
operationalized in an objective function referred to as a cost function, or a cost for short.

Many different objective functions could be used to instantiate the idea of cost, as long as they
increase monotonically with the degree of constraint violation. For instance, a simple cost function
for minimizing differences between two conditions, c1 and c2, on a particular nuisance variable, x,
is to square the difference between the means of the two conditions on that variable:

OMIN(xc1,xc2) = (x̄c2 − x̄c1)
2 (S.1)

Maximizing the differences between two conditions can be achieved simply by reversing the
sign of the cost function used to minimize differences. To enforce a particular rank ordering of the
means of the two conditions—for example, that the mean frequency of the high-frequency group is
not just different but higher than that of the low-frequency group—an additional term, s(x̄c1, x̄c2),
can be added to the equation corresponding to a simple sign function that equals 1 when c1 is less
than c2 and −1 otherwise:

OorderMAX(x) =−OMIN(xc1,xc2) s(x̄c1, x̄c2) (S.2)

This added term ensures that if c1 is greater than c2, larger (positive) costs result. As long as
c1 is less than c2, greater differences between the conditions produce smaller (more negative) costs.

By expressing these constraints as costs on the same scale, it becomes possible to assess the
overall cost of a particular set of stimuli by calculating the cost associated with each constraint
and summing these values. (There is a minor complication in the case of what we refer to as hard
constraints, which we discuss later). To negate the effects of different variables having broader or
narrower distributions of values (thus leading to superficially different costs for the same relative
differences), SOS calculates cost on the normalized values of each variable rather than on the raw



SOS SUPPLEMENTAL MATERIALS 3

values directly. van Casteren and Davis (2007) noted a similar benefit from normalization in the
performance of their algorithm.

In many cases, the use of these two simple cost functions to express constraints related to the
maximization or minimization of differences performs remarkably well. An understanding of these
constraints at the level of detail presented above may therefore be sufficient for many applications
and for acquiring a theoretical understanding of the basic operation of SOS. However, depending
on the particular constraints that a researcher wishes to instantiate and the complexity and diffi-
culty of achieving them, it may be useful to modify the default constraints or use other constraints
that are more suitable for a given goal. An appendix in the main SOS article provides a detailed
description of the full vocabulary of constraints and cost functions currently implemented in SOS,
including item-level and group-level constraints, entropy (uniform distribution of items) constraints,
correlation-matching constraints, and more. These variations allow for considerable sophistication
in creating a wide variety of designs, as illustrated in the example optimizations reported in the main
article.

Step 3: Identifying a population and an initial sample of stimuli

Any population of stimuli can be used by SOS as long as the variables to be optimized are
expressed on an interval scale. By default, the initial samples for each condition consist of random
selections of the desired number of items from the population. Alternatively, some or all of the items
in a condition can be pre-specified by the experimenter; further, these items can be ‘locked’ such
that they will not be modified by the optimization. This feature allows for considerable flexibility in
the use of the optimizer. For example, an existing set of stimuli can be used as a baseline condition,
and new conditions with specified relationships to that baseline can be created. Alternatively, the
optimizer can be used to find replacements for a few experimental items in an otherwise acceptable
set of items based on the results of a pilot study. The use of a locked set is summarized in an
example case in the main manuscript and in additional example cases included as part of the SOS
online manual.

Step 4: Search for items in the population and in the sample that could
be swapped to better satisfy the constraints

Once the constraints have been specified and an initial sample of items has been drawn, the
search for an optimal set of items can begin. In what follows, we present the simplest form of a
search in SOS — a “greedy” optimization of stimuli. Greedy optimizations always seek to swap out
existing items in a sample with items that better satisfy the constraints. Although this greedy search
has benefits in terms of speed, it is not formally guaranteed to find an optimal or near-optimal set
in all situations. We then describe how this problem can be overcome by relaxing the deterministic
nature of the greedy optimization and allowing swaps to be influenced by random noise—that is, by
allowing for the stochastic optimization of stimuli as in a classic stochastic relaxation search (Kiefer
& Wolfowitz, 1952).

Representing the optimization problem as movements in state space

To understand how the optimization algorithm operates, it is useful to conceptualize the
search for optimal stimuli as a search in state space (Rumelhart, Smolensky, McClelland, & Hin-
ton, 1986). As an example of a simple state space, consider a researcher who has word frequency



SOS SUPPLEMENTAL MATERIALS 4

Table S.2: Example ‘population’ data set containing a single global minimum when attempting to minimize
the variability in the frequencies of a ‘sample’ containing two items

Item Word Frequency
1 cow 8
2 pig 10
3 cat 11
4 dog 13

ratings for a population of four items listed in Table S.2. The researcher’s goal is to fill each of
the two “item-slots” in the sample with the two items that together have the lowest variability. For
simplicity, this constraint can be operationalized as the following simple cost function based on the
standard deviation (std) of the sample based on the data in the frequency column, freq:

OMINstd(freq) = (std(freq))2

(dditional details on how this constraint can be instantiated in SOS are described in the cost
functions appendix of the main article.

The representation of state space consists of the following. First, each combination of items
that can be generated from the population is referred to as a state. Each state is represented by a
location in space. Each dimension represents the “slot” in the condition that must be filled with a
sampled item, and one level on each dimension represents every stimulus that could be used to fill
that slot. In our example, the state space corresponds to a 4x4 plane. Two dimensions correspond
to the two slots to be filled, and the four levels on each dimension correspond to the four items that
could be used to fill these slots. Let us further stipulate that once an item has been used to fill a slot,
it cannot be used to fill another slot (i.e., sampling occurs without replacement). This requirement
effectively reduces the plane from 4x4 to 4x3, since the item used to fill the first slot cannot be used
to fill the second. An illustration of this procedure is presented in Figure S.2.

Next, an additional dimension is added to represent the cost associated with each state in
space. Higher costs are represented as higher elevations, and lower costs as lower elevations. Within
this framework, searching for an optimal set of items amounts to moving in this space towards the
state with the lowest cost.

In this example, state space is a cuboid, with two dimensions for each of the slots in the
sample that must be filled and one dimension for cost. But, for visualization purposes, we can
alter this geometric depiction slightly to allow the first of the “slot” dimensions to represent each of
the four possible items directly and the second “slot” dimension to represent the three neighboring
items. These neighbors are denoted as n1, n2, and n3, in reference to their rank-ordered position in
the table once the first item has been removed, as illustrated in Figure S.2. For instance, relative to
the items cow, pig, and cat, the third neighbor would be dog; in contrast, the third neighbor of the
dog item would be cat. Now, the cost for each state can be plotted as a cost surface above the plane
formed by the intersection of the different combinations of items, as depicted in Figure S.2. Having
created the state space, all that remains is to derive a means of moving to the point with the lowest
cost.



SOS SUPPLEMENTAL MATERIALS 5

Figure S.2. Upper section: Two-dimensional depiction of the state space formed by each of the different
combinations of pairs of items listed in Table S.2. The values in each cell of this table correspond to the cost
associated with each combination of items when trying to minimize the variance in a sample of two items.
The diagonal is blank due to the restriction that items are sampled without replacement. Lower section: A
reduced version of the table from the upper section where the data from the upper triangle has been shifted
to the left to merge with the lower triangle. The labels for the vertical axis of this table remain unchanged,
whereas the labels for the horizontal dimension now correspond to the neighboring items of the items listed
on the vertical axis.

Greedy optimization of stimuli

The greedy version of the optimization algorithm is the simplest way to navigate to a state
with lower cost. This process begins by calculating the cost of the random location at which the
algorithm is initialized. Next, the algorithm randomly selects a condition and an item in that condi-
tion for possible replacement. In state space, this corresponds to selecting one of the slots and then
allowing the level (item) on that dimension to be changed. The values of all other slots (items in
the set) are held constant. A replacement item is then selected from the population (refered to as a
population feeder in the software) or, additionally, from one of the other samples of items (refered to
as a sample and population feeder in the software). This candidate replacement item is the level of
the selected dimension to which the algorithm would move if the swap actually took place. Having
selected a pair of items that could be swapped, the cost associated with the swap is then computed.
If the cost of the swap set is lower than the cost of the current set, the swap set is adopted as the



SOS SUPPLEMENTAL MATERIALS 6

Figure S.2. Three-dimensional representation of the data from the lower section of Figure S.2. The plane
at the base of the plot corresponds to the different combinations of items that can be formed from the data
listed in Table S.2. The “item” axis corresponds to items 1-4 from the table directly, whereas the “neighbor”
axis corresponds to the neighbor items of the item selected on the “item” axis (explained in detail in the body
text). The “cost” axis represents the cost associated with each state, or combination of items, that could be
formed from the population of items being sampled from. Note that the shape of the cost surface is concave
when viewed from above and consists of a minimum valley surrounded by hills of monotonically increasing
cost. The bottom of this valley corresponds to the global minimum of the state space, and to the pair of items
with the lowest variability in frequency values.

current set; otherwise, the current set does not change.1 This swapping process is then repeated to
eventually arrive at a cost minimum where swapping out any item in the sample actually leads to
higher cost. We refer to each attempted swap as an iteration.

The greedy version of the algorithm has several useful properties. First, the cost of the swap
set can be computed very efficiently by means of a local update. In effect, the contribution of the
current item in the sample can be removed from affected cost functions, and the contribution of the
swap item can be added to affected cost functions; there is no need to effectuate a global update
which requires a calculation based on the full set of data. A second benefit of the greedy search
is that it can operate without knowledge of the full topography of the state space. It is usually not
feasible to collect such knowledge given the impracticality of exhaustively searching for an optimal
set. A greedy optimization, however, can begin its operation from a randomly selected location (i.e.,
a random sample of items) and lower cost without knowing the full cost topography. The greedy
algorithm is somewhat akin to a nearsighted person: it only needs to “see” cost at a neighboring
point in state space to decide whether the swap should be made or not. A third advantage of the
greedy search is that it rapidly descends in cost space towards a minimum, efficiently focusing its
search on the regions of space that are most likely to contain minima. It does so by incrementally
ruling out many regions of the cost space for further exploration. Specifically, the algorithm will
never consider states of items that require two subsequent swaps that both increase cost relative to

1As discussed in detail in the cost functions appendix of the main manuscript, which focuses on the details of the cost
functions themselves, the SOS software implements two types of constraints, “hard constraints” and “soft constraints”.
The same swapping rule described here applies to both types of constraints, but minimizing hard constraints takes pre-
cedece over minimizing soft constraints (i.e., a swap will occur if the cost associated with the hard constraints is reduced
even if this also leads to an increase in the cost associated with the soft constraints).



SOS SUPPLEMENTAL MATERIALS 7

the current position in space. For instance, in the four-item example, it would be possible, just by
chance, to start the search by selecting the maximally variable sample of cow and dog. A greedy
search would quickly replace these items with a minimally-variable sample containing pig and cat,
and, absent some additional stopping criterion (discussed later), would continue to try (and fail)
to replace either pig or cat with cow or dog. Relevant to the present discussion is the fact that
the algorithm would never re-examine the cow and dog sample because to do so would require an
intermediate uphill step in state space followed by a second attempted step uphill. When dealing
with larger populations of items, this property of the greedy algorithm allows more attempted swaps
to take place for stimuli that are more likely to lead to the optimal set.

Taken together, the greedy search possesses many of the characteristics of an ideal search
algorithm. It is computationally efficient and capable of examining large numbers of sets. Its de-
terministic cost-reduction rule effectively constrains the number of sets to examine and reduces the
time spent exploring less optimal sets than those it has already identified. In many circumstances,
the greedy version of the algorithm may, in fact, be sufficient for optimizing stimulus sets. This pos-
sibility is always assessed in practice in SOS because the results of a greedy optimization are useful
in configuring the parameters of the more sophisticated stochastic algorithm, and so a greedy opti-
mization is usually run first. Nevertheless, the greedy search suffers from a fundamental limitation,
as we discuss next.

Greedy optimization’s strength is also its weakness—or, the pitfalls of local minima. As noted
previously, one advantage of the greedy optimization is that it is only capable of descending to states
with lower cost. This feature allows the greedy version to rapidly converge on a set with lower cost
and to avoid exploration of parts of the space that are unlikely to contain good solutions. Insofar as
the cost topography is perfectly concave, the greedy version is an ideal way of identifying the point
with the lowest cost. In practice, however, the cost space is often not perfectly concave. Instead,
it may be formed of several unconnected lower-cost valleys separated by higher-cost hills. Since
greedy optimizations can only travel downhill, once a valley has been entered, the algorithm will
inexorably move towards the valley’s floor. The valley floor is a local cost minimum since all of
the surrounding states are of higher cost. However, the cost here may still be much higher than the
global minimum cost value, present in another valley in the space. Greedy optimization lacks a way
to climb over the higher cost barriers that surround the local minimum in order to reach the global
minimum.

As a concrete example of this problem, consider the state space that results if the researcher
attempting to minimize the variability in a sample’s word frequency must select sample items from
a slightly different population listed in Table S.2. This population’s state space is plotted in Figure
S.2. Inspecting this space reveals that the set of items with the lowest variability (donkey and
horse) occurs in one corner of the space comprised of the highest frequency items. This global
minimum in cost space is separated from a local minimum formed by the lowest frequency items
mule and goat—which has a relatively low cost value but is still higher than the global minimum—
by a barrier of higher cost. This is because there is very high variability in all of the samples
comprised of intermediate-frequency items. If a greedy optimization begins at a point within the
valley of the local minimum, it will be incapable of reaching the global minimum. A simplified
depiction of the local minimum problem is presented in Figure S.2, which roughly corresponds to a
multidimensional scaling of the present problem into two dimensions.

Local minima are likely present in the cost topographies of many different optimization prob-



SOS SUPPLEMENTAL MATERIALS 8

Table S.2: Example ‘population’ data set containing a global minimum and a local minimum when
attempting to minimize the variability in the frequencies of a ‘sample’ containing two items

Item Word Frequency
1 mule 1
2 goat 6
3 donkey 12
4 horse 13

Figure S.2. Depiction of a state space containing both a local minimum (foremost region of the plane) and
a global minimum (backmost region of the plane) separated from one another by a ‘hill’ of higher cost. The
cost function used to generate the space was identical to that used for Figure S.2, applied to the data in Table
S.2.

Figure S.2. Approximation of the state space illustrated in Figure S.2 after a multidimensional scaling has
been applied to the base plane on that figure to reduce it to a single dimension.



SOS SUPPLEMENTAL MATERIALS 9

lems, and their presence and locations are rarely known precisely because the entire cost topography
usually cannot be computed. As a general guideline, the likelihood of becoming trapped in local
minimum increases as sample size increases, as population size decreases, and as the number and
complexity of the constraints increases.

Stochastic optimization of stimuli

The problem of local minima precludes greedy optimization as a general method for discov-
ering optimal stimuli. However, the idea of constraining the search to the regions of state space
that are most likely to contain a minimum often leads to succesful optimizations that are superior to
the sets discovered by a purely random search of the space. By interpolation, employing a form of
stochastic optimization search, which involves both a greedy-like bias on swap decisions combined
with a random noise term, is a logical solution to these problems (e.g., Kiefer & Wolfowitz, 1952).
In detail, our implementation of a stochastic algorithm consists of replacing the deterministic cost-
reduction rule from the greedy optimization with a stochastic choice that can be biased to keep or
swap items on the basis of the relative cost difference, ∆cost, between the current set and the swap
set (Hinton & Sejnowski, 1986). Formally, this choice is made by passing ∆cost through a sigmoid
function with a temperature parameter, T , which has a lower bound of zero. Temperature specifies
the steepness of the slope of the linear portion of the sigmoid in the range surrounding zero and, in
conceptual terms, determines the degree to which ∆cost can bias the probability of staying with the
current set or moving to the swap set:

pswap(∆cost,T ) =
1

1+ e
−∆cost

T
(S.3)

The role of the temperature parameter is to determine how strongly differences in cost be-
tween the current state and the swap state are able to bias the likelihood of making a swap. More
formally, the likelihood of swapping to a particular state follows a Boltzmann distribution and is
determined by the ∆cost of the swap state relative to the current state, as well as the temperature.
Figure S.3 illustrates this relationship in several different sigmoid functions generated with various
temperature parameters. When temperature is very high, the sigmoid collapses into a line with a
slope of zero. At such high temperatures, even large cost differences are unable to bias the likeli-
hood of making a swap, and swaps are made at random. When temperature equals zero, the sigmoid
function collapses into a step function and the algorithm makes identical swap decisions as in the
greedy algorithm. At intermediate temperatures, however, the likelihood of making a swap is biased
towards lowering cost without necessitating that all steps always lower cost—all possible swaps are
associated with a non-zero likelihood and could potentially be made. As a result, as long as temper-
ature is greater than zero, this algorithm is guaranteed, in a formal sense, to be able to move to the
global cost minimum, provided that the optimization is run for a sufficiently long period of time.

Although this formal guarantee offers a basic assurance that the algorithm is capable of find-
ing an optimal set, in practice, selecting an appropriate temperature for a given optimization prob-
lem poses a challenge. If the temperature is too high, the algorithm will effectively be performing
a random search of state space. If temperature is too low, then the algorithm performs a greedy
optimization. As we have discussed previously, neither of these options are ideal. It is therefore
useful to consider the lower and upper bounds for the range of temperatures that allow stochastic
optimization to operate effectively.



SOS SUPPLEMENTAL MATERIALS 10

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆cost

p(
m

ov
e 

to
 n

ei
gh

bo
r 

sa
m

pl
e)

 

 

t=Inf
t=7
t=3
t=0

(current item − swap item)

Figure S.3. Depiction of the likelihood of moving to a neighboring sample in state space by swapping
two items based on the cost difference, ∆cost, between the two items that could be swapped, for a range of
temperature values. Inf = infinite.

To determine the effective upper bound on temperature at which nearly all swaps are random,
it suffices to allow the algorithm to explore the different states in state space completely randomly
(e.g., by effectively setting temperature to ∞) for a block containing some prespecified number of
iterations (1000 generally works well). As the algorithm randomly explores the space during this
block, the ∆cost values that result from each attempted swap are recorded. At the end of the block,
temperature can then be set to a high enough level that even the most extreme ∆cost values exhibit
only a modest bias on the likelihood of swapping two items. After experimentation with several
different values, we have found that setting the upper bound on temperature to the range of ∆cost
values that encapsulates 95% of swaps (specifically, the 97.5th - the 2.5th percentiles) during this
block of random swaps is an effective value. This is a reasonable approximation of the upper bound
of temperatures which allow ∆cost to affect the likelihood of making a swap which is also fairly
consistent across optimizations (the range of ∆cost values being far more variable across different
optimizations).

Determining a lower bound on temperature involves running the greedy version of the algo-
rithm until it becomes trapped in a minimum. At this point, we infer that the reason the algorithm
became trapped was because all of the swaps that were attempted while in the minimum were of
a higher cost than the current state. Without knowing whether this minimum is local or global,
a conservative assumption would be to assume that it is a local one and that the algorithm would
have been able to escape it by making one or more uphill swaps. To escape from the minimum, it



SOS SUPPLEMENTAL MATERIALS 11

would therefore be necessary to raise temperature to a point at which a small subset of the attempted
swaps are substantially influenced by the stochastic process. This change would allow the algorithm
to move uphill to these items and potentially escape the minimum. By recording the ∆cost values
across the last block of iterations (typically 1000) of a greedy search, the sampling distribution of
∆cost at various percentiles can be examined (all of which, by definition, are greater than zero, since
no swaps were able to further reduce cost). Then, temperature could be set to the ∆cost for a given
percentile to allow all of the attempted swaps below that percentile to have a substantial likelihood
of being influenced by the stochastic process and thus able to lead to uphill movements. The spe-
cific percentile that is selected as the lower-bound on temperature reflects a trade-off between how
greedily the algorithm behaves and how likely it is that the algorithm will be able to avoid a local
minimum. After running a wide variety of optimization problems, we have found that selecting the
∆cost from the 10th percentile has generally been a good starting value, although a larger value (e.g.,
from the 50th percentile) may lead to a more optimal set, albeit after many more iterations.

Adding a temperature annealing schedule for fast, reliable optimizations. Having established
the lower and upper bounds for temperature, the next question to ask is whether the temperature
used in an optimization should be nearer to the upper bound or to the lower bound. In an ideal
situation, the goals of the stochastic optimization algorithm should be to allow for 1) stochastic
movement that travels uphill in cost space when stuck in a local minimum and 2) rapid, greedy
movement once the algorithm has entered the valley that contains the global minimum. A gradual
annealing process2 which lowers temperature over time achieves both of these goals (Kirkpatrick et
al., 1983). This allows for an early period of exploration of a variety of different states and gradually
eases into the global minimum (Hinton & Sejnowski, 1986).

To understand how the annealing process accomplishes this feat, consider the ball-in-a box
metaphor of temperature annealing outlined by Hinton and Sejnowski (1986). Imagine that a model
of the cost topography shown in Figure S.2 was placed in a box. Next, a ball is placed into the box.
The ball’s location corresponds to a particular point in state space. The box is then sealed so that
the topography cannot be seen. Now, imagine that someone who has not seen the topography is
instructed to move the ball to the lowest point in the box—the global minimum. Without knowing
the topography, this person must therefore rely on two known principles and the gradation between
them to move the ball to the global minimum. If the box were shaken vigorously, the ball would
bounce about and potentially visit every possible location (state) in the box (stochastic search with
high temperature). If the box were set still, the ball would roll downhill to the bottom of the closest
valley (greedy search).

By starting off by shaking vigorously and then gradually shaking the box less and less, it will
be possible to move the ball to the global minimum. Shaking the box vigorously initially allows the
ball to avoid becoming trapped in any local minimum. By incrementally decreasing the vigor with
which we shake the box (by decreasing temperature), a useful property emerges: at some point, the
shaking will be providing the ball with enough energy to bounce out of a local minimum, which
is by definition shallower than the deeper global minimum, but insufficient energy to move uphill
from the global minimum back into the local minimum. It is therefore possible to ensure that the

2Movellan and McClelland (1993) note that there is a slight distinction between simulated annealing (Kirkpatrick,
Gelatt, & Vecchi, 1983) and simulated sharpening (Akiyama, Yamashita, Kajiura, & Aiso, 1989), and our implementation
of annealing is actually closer to the latter. However, we expect that the annealing metaphor is more intuitive and have
therefore overlooked this distinction in the present work.



SOS SUPPLEMENTAL MATERIALS 12

Figure S.4. Depiction of the temperature values after a given number of temperature steps away from an
initial temperature, T0, as a function of a range of pDecrease and λ values.

ball effectively becomes contained within the global minimum to an arbitrarily high probability.
In cost topographies that contain many hills and valleys, gradually lowering temperature also

ensures that the largest hills are excluded from being visited before the smaller hills. This results
in the early elimination of the greatest violations of the constraints. The algorithm then proceeds to
deal with the more fine-grained and subtle topographic differences that exist amongst the remaining
states once these larger differences have been ruled out.

To implement these ideas formally, we selected an exponential decay function. This equa-
tion has been shown to be successful in the annealing of connectionist networks, which are close
relatives to SOS (Hinton & Sejnowski, 1986) and represents the optimal annealing function when
such networks are allowed to learn their own annealing functions via gradient descent (Ackley, Hin-
ton, & Sejnowski, 1985; Plaut, Nowlan, & Hinton, 1986). In the decay function, temperature, T ,
is determined by three parameters: The first parameter is the initial temperature, T0, which corre-
sponds to the ∆cost at the (97.5th – 5th) percentile of the sampling distribution of ∆cost during the
initial block of completely random swapping. This temperature exponentially decays towards 0 as
a function of the second parameter referred to as the decay rate, λ, and the third parameter, which
specifies how many times temperature has been decreased (we refer to these as temperature steps,
with the number of steps denoted as nSteps). Each step typically contains at least 1000 iterations,
for reasons discussed in detail later.

T = T0 · e−λ·nSteps (S.4)

Plots of the temperature values for a given number of steps were generated using different
values of the λ parameter (and a corresponding pDecrease, discussed later) and are presented in
Figure S.4. Note that higher values of λ lead to more drastic temperature decreases at each step,
whereas lower values of λ lead to more gradual temperature decreases. By varying λ, it is therefore
possible to trade off making a rapid transition from random to deterministic behavior—which leads
to faster settling into a minimum—and making a slow transition—which ensures that the algorithm
does not get stuck in a local minimum.

Two factors complicate the intuitiveness of the λ parameter in the previous equation. First,



SOS SUPPLEMENTAL MATERIALS 13

λ is an unbounded parameter which affects temperature in a nonlinear fashion. Second, whether a
given λ leads to a very aggressive or very gradual annealing schedule is determined by the specific
optimization problem at hand. The latter point is the result of differences in the “elevations” of
the minimum and maximum cost values across optimization problems, leading to different effective
temperatures at which the optimizer will be making swaps at random versus only making swaps that
lower cost. We have attempted to address these issues so that users of the SOS software can more
readily select an appropriate aggressiveness for the decay function as follows: Instead of specifying
λ directly, the current implementation of SOS allows for the indirect specification of λ via several
other parameters. We explain this procedure in detail in the next section, although in practice helper
functions are used to conduct these calculations and thus very little user interaction is needed.

The parameters needed to calculate λ indirectly are the initial temperature at which the system
shows random behavior, T0, the final temperature at which only a pre-specified portion of swaps will
be made randomly (for the rest, the algorithm will basically operate in greedy mode), Tf inal , and the
number of steps, nSteps that are needed for temperature to decrease from T0 to Tf inal . The first
two parameters correspond to the upper and lower temperature bounds outlined previously. The
nSteps parameter then determines how quickly temperature passes from the upper bound to the
lower bound. The choice of the number of steps to use reflects a compromise between minimizing
run-time and avoiding local minima. At the very least, three steps should be used, as the first
step will correspond to a random search and the last step will be similar to a greedy search. As
a guideline, we have found that at least 10 steps should be used in most optimizations, and more
steps tend to lead to better optimizations. Once T0, Tf inal , and nSteps have been determined, these
values can be substituted into Equation S.4 to determine λ. Having determined λ, the fully specified
exponential decay equation can then be used to calculate the proportion of the temperature that will
be subtracted from the temperature at step n to determine the temperature at step n+1. We refer to
this proportion as pDecrease.

In practice, with the help of this indirect equation and the helper functions in SOS, all a user
must do to configure the decay equation is as follows: First, run the optimizer in greedy mode to
see if it can find a sufficiently optimal set. If it fails, the ∆cost value from the desired percentile
(e.g., the 10th) should be recorded, and the user can pass this information, along with the desired
number of steps (e.g., 10), to a helper function that calculates pDecrease. Once pDecrease is set,
the decay equation (and by proxy, λ) can be configured automatically, and a stochastic optimization
can begin.

Using a proxy of thermal equilibrium to assess when temperature should be lowered. Having
decided to use a gradually decreasing temperature value, one question still remains: When should
temperature reductions occur? After some experimentation with other schedules for decreasing
temperature, we have found that it is best to do so only once sufficient evidence has accumulated
so as to reliably estimate that the position of the current set of stimuli in state space no longer falls
within a local minimum from which it could not escape at lower temperatures. This can be estimated
by considering when the optimization at a particular temperature has reached a state referred to as
thermal equilibrium.

Thermal equilibrium is the point at which the probability of swapping to a given item has
stabilized at a particular value across all items. To understand how this measure could serve as
a basis for assessing when to lower temperature, consider once more the simple state space with a
single local minimum presented in Figure S.2. Assume for the moment that temperature has been set



SOS SUPPLEMENTAL MATERIALS 14

a little above the level needed to move from the valley containing the global minimum to the valley
containing the local minimum. Also assume that the optimization has been run for a sufficiently
long amount of time to determine the probability of swapping a particular item into the sample set.
At this point in time, the probability distribution for the sets in the valley of the global minimum
will be higher than those in the valley of the local minimum since ∆cost should be substantially
biasing the likelihood of making swaps into and out of each valley. Nevertheless, in both cases,
these probability distributions will contain values that are non-trivially above zero.

Next, imagine that temperature is lowered so that it is just possible to leave the valley con-
taining the local minimum and enter the valley containing the global minimum. Once in the valley
containing the global minimum, the relatively low temperature will provide a substantial bias to
continue moving downhill in this deeper valley. As cost descends further, the likelihood of making
a swap back into the valley containing the local minimum gradually moves towards zero. If the op-
timization continues at this new temperature for some period of time, the probability distributions
for swapping to each item will eventually stabilize once more. The new probability distribution will
differ from the old one, however, because some of the probabilities (i.e., those contained in the local
minimum) will be lower in the new distribution, whereas others (i.e., those in the global minimum)
will be higher. At this point, temperature could be lowered again to hone in on the global minimum
more quickly.

Of course, if the temperature is still substantially above the level needed to probabilistically
exclude a portion of the state space containing a local minimum (e.g., if temperature were still an
order of magnitude above the temperature value described in the previous example), these probabil-
ity distributions might not differ substantially before and after temperature is changed. Thus, one
cannot simply compare the probability distributions before and after the change in temperature to
infer if temperature can be lowered. Instead, it is necessary to estimate the probability distribution
repeatedly at a particular temperature and lower temperature only when consecutive probability dis-
tributions are nonsignificantly different from one another. When this is true, thermal equilibrium has
been reached. To maximize the accuracy of this inference and to ensure that the distributions have,
in fact, stabilized, it is necessary to try many attempted swaps before each assessment of whether
thermal equilibrium has been reached so as to allow the distributions to become stable.

In principle, examining the stability of the probability distribution of swapping to different
items is a good way to assess thermal equilibrium. In practice, however, it can take very large
blocks of iterations before the probabilities of swapping to each item stabilize. To reduce run time
and memory use, it is far more efficient to monitor a proxy of the probability distribution—the
distribution of cost values. This measure provides a summary of the probability of swapping to a
given item based on the cost value associated with swapping to that item, averaged across all items,
and is already calculated as part of the optimization. The cost distributions for two subsequent
blocks of trials can also be readily compared using t-tests, such that thermal equilibrium is said to
have been reached once a standard statistical criterion has been exceeded (e.g., p > .05).3

3Empirically, the distribution of cost values typically deviates somewhat from some of the assumptions underlying
a t-test (e.g., normality). However, the goal of this comparison is to provide a quick and relatively reliable means of
assessing when thermal equilibrium has been reached, and t-tests are more than adequate for this task.



SOS SUPPLEMENTAL MATERIALS 15

Step 5. Evaluating how well the constraints have been satisfied and
stopping the optimization

The search for an optimal set of stimuli can be terminated automatically when one of several
conditions is met. The first consists of passing statistical tests specified by the user. These tests
assess when the constraints have been satisfied to a desired threshold. There are currently three
main types of statistical tests available for use in SOS: one- and two-sample t-tests (paired and in-
dependent), correlation-matching tests, which test whether a correlation in the sample matches a
target value (typically 0 to eliminate correlations between independent variables and boost power
in a regression), and a Kolmogorov-Smirnov test for assessing the uniformity of a distribution.
These parametric statistical tests are approximate analogues to the distance minimization and max-
imization constraints, correlation-matching constraints, and entropy constraints, respectively. For
instance, if the goal is to make two conditions maximally different on word frequency, a user could
specify that a t-test on the word frequencies across the two conditions should return a t-statistic
associated with a p-value that is less than .05. Similarly, if another goal is to match the conditions
on word length, the user could specify that a t-test across the word length data in the two conditions
should return a t-statistic associated with a p-value greater than .5, which reflects a failure to reject
the null hypothesis. Different critical p-values may be desirable both depending on the importance
of satisfying different constraints during the optimization and the specific parameters of the con-
straint in question. For instance, the statistic used to assess whether a sample correlation matches a
target (population) has larger confidence intervals when testing whether two near-zero correlations
are matched than when two large correlations are matched because, by definition, there is less unex-
plained variance in the latter case. The test of uniformity of distributions is also capable of detecting
small deviations from uniformity that may not be particularly important in many situations. Using
a smaller critical p-value (e.g., .001) when testing whether a sample distribution is uniform and in-
specting the plots of the distributions (which can be accomplished via the SOS software) when the
test is not passed to determine if they are due to a failure to distribute items across particular ranges
is therefore recommended.

The optimization terminates once all of the statistical tests exceed the user-specified criteria.
Because these probabilities generally do not change drastically after a single iteration, statistical
tests are only run periodically (the default is every 1000 iterations). Note, however, that blind re-
liance on these statistical tests may in some cases be misleading because statistically significant
differences are sometimes detected for extremely small effect sizes (e.g., a word frequency differ-
ence of 0.1 can be significant between two conditions because the variability within the conditions
is .001). This is most frequently the case in the context of pairwise minimization constraints, which
in minimizing pairwise differences also minimize the variability in these differences, which in turn
leads to an apparent lack of improvement or worsening of the match. Instead, failures to satisfy
the statistical tests when the optimization ends for one of the other reasons discussed next typically
warrants inspection to confirm that the statistical differences between the conditions are theoreti-
cally important. If appropriate, a user can also opt to set a minimum difference threshold when
configuring the tests. This allows the statistical tests to “pass” once the difference between the
two conditions has decreased below this bound, independent of statistical significance. A special
print-out is displayed when tests pass based on the threshold instead of the statistical criteria.

The second condition that can cause the termination of the search is when the sample has
reached a “frozen” state. That is, cost has not changed for a specified number of iterations (the



SOS SUPPLEMENTAL MATERIALS 16

default is 10,000). Note that swaps may still be occurring between items with the same impact
on overall cost (i.e., items for which a swap would generate a ∆cost of exactly zero). Frozen
states should generally only occur if the search has become trapped within a minimum and further
descents in cost are no longer possible. Using a very gradual annealing schedule and allowing the
optimization to reach a frozen state in stochastic mode should therefore correspond to finding a
global minimum in the search space. If the only goal is to identify the set(s) of items that best
satisfies the constraints, then this is the preferred mode for terminating the search. However, letting
the optimization reach a frozen state may not necessarily be desirable if the goal is to use the selected
items to make broad generalizations to other items, as discussed in the next section.

The third stopping condition is when a pre-specified number of iterations has elapsed, which
prevents the optimization from running for an indeterminate amount of time. Generally, users should
set this value to as high a value as they are willing to wait for an optimization to finish. The
software defaults to a relatively small number of iterations (10,000) so that users can confirm that
their optimization procedure is roughly behaving as it should before increasing the value of this
stopping condition. We recommend a value of at least 500,000 and possibly into the tens or hundreds
of millions depending on the complexity of problem being run, the speed of the computer, and
the patience of the experimenter. If this stopping condition is reached, the experimenter can then
consider whether the resulting set satisfies their constraints or if an additional pressure (e.g., a more
aggressive annealing schedule) is needed to encourage the optimization to reach a frozen state before
this amount of time has elapsed.

Step 6. Assessing the degree to which the items in a sample represent
the broader population

Although one of the principal goals of many researchers is to infer the results of an exper-
iment using a particular sample of stimuli to a broader population, present practices in stimulus
selection place virtually no emphasis on assessing how representative a sample is of the population.
Consequently, the final step in the optimization procedure does not have a clear analogue in many
experimenters’ stimulus selection process. However, constraints imposed on selecting experimental
items can effectively restrict the sampled items to a very unusual subpopulation or even a uniqe set
of items. At that point, stimuli should be treated as fixed as opposed to random effects and cannot
be used for the purpose of statistical inference to other stimuli (Hino & Lupker, 1996). Clearly
then, failing to assess the generalizability of stimulus sets is a critical, yet overlooked, aspect of
experimental design. Such a state of affairs is quite paradoxical given the strong emphasis that is
placed on reporting statistical inferences that generalize across items, as it is unclear whether such
inferences are appropriate (e.g., by-item and by-subject analyses, F-max, Clark, 1973; mixed-effect
regression, Baayen, Davidson, & Bates, 2008).

Automated optimization procedures do, however, offer a means of assessing generalizabil-
ity. The simplest of these methods involves a direct measurement of how many different items
could have been used to satisfy the constraints imposed by the user (i.e., the size of the effective
population). This is achieved by running the optimization several times and comparing the sets
that satisfy the constraints. If many different sets of items can be produced which all satisfy the
constraints, there is a basis to generalize the particular set of findings to a broader population of
items; otherwise, the sample cannot be used as a basis for statistical inference to other stimuli. As a
general guideline, we recommend that if the average overlap between sets of stimuli is below 25%,
generalizability is likely not an issue. Researchers should typically be concerned about failures to



SOS SUPPLEMENTAL MATERIALS 17

generalize when the average overlap exceeds 50%, although the details of the optimization problem
and indended generalization may lead a researcher to adopt somewhat different thresholds.4These
additional searches may not even take a noticeable amount of time to run on a modern multi-core
processor, as many optimizations can be run simultaneously.5

The procedure outlined above is likely suitable for assessing generalizability in the majority
of cases, where the main objective is to assess whether a relatively broad population of items meets
the constraints. However, in some cases a researcher might be particularly concerned with garnering
some stronger assurance that the actual population is very well represented in the sample of items.
In this case, soft entropy constraints can be used to ensure that the breadth values of a particular
variable across the entire population are sampled. This is arguably the best way of ensuring the
external validity of the sampled items but may make it difficult to simultaneously satisfy other
constraints.

The overall optimization process thus explicitly reflects a trade-off between internal and ex-
ternal validity, and different investigations may warrant different trade-off schemes. At the very
least, SOS makes the assessment of this trade-off and of the effects of re-weighting the importance
of these two factors a relatively easy and effortless task. This possibility, in turn, should encourage
a consideration of these issues when selecting stimuli for an experiment.

4It is worth noting that in the details, the average amount of overlap may be too coarse a measure for making a
fine-grained inference about generalizability, because it may be possible that a very small set of items which do overlap
across the different samples are necessary to satisfy the constraints in all of the optimizations. A simple way of assessing
this possibility is to save the residual population after an optimizated sample has been discovered (methods of doing so
are described in the user manual) and reruning the optimization sampling from the residual population. Alternatively,
and more rigorously, users could essentially set up different variants of the same optimization and have them all run
simultaneously while sampling from the same population. The latter is in fact the more formally appropriate method of
ensuring the generation of equally comprable samples as all of the samples effectively had equal access to all of the items.
However, given current practices in the field, any assessment of generalizability would represent a substantial advance.

5This can be accomplished either by launching the SOS executable multiple times or by running SOS using a MAT-
LAB installation that includes the Parallel Computing Toolbox. Note that a different random seed is needed when initial-
izing each optimization.



SOS SUPPLEMENTAL MATERIALS 18

REFERENCES

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for boltzmann machines.
Cognitive Science, 9(1), 147–169.

Akiyama, Y., Yamashita, A., Kajiura, M., & Aiso, H. (1989). Combinatorial optimization with gaussian
machines. Proceedings of the International Joint Conference on Neural Networks, 533–540.

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects
for subjects and items. Journal of Memory and Language, 59(4), 390–412.

Clark, H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological
research. Journal of Verbal Learning and Verbal Behavior, 12(4), 335–359.

Hino, Y., & Lupker, S. (1996). Effects of polysemy in lexical decision and naming: An alternative to lexical
access accounts. Journal of Experimental Psychology: Human Perception and Performance, 22(6),
1331–1356.

Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in boltzmann machines. In D. E. Rumelhart,
J. L. McClelland, & the PDP Research Group (Eds.), Parallel Distributed Processing: Explorations in
the Microstructure of Cognition. Vol. 1: Foundations (pp. 282–317). Cambridge, MA: MIT Press.

Kiefer, J., & Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function. Annals of
Mathematical Statistics, 23(3), 462–466.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science,
220(4598), 671–680.

Movellan, J., & McClelland, J. (1993). Learning continuous probability distributions with symmetric diffu-
sion networks. Cognitive Science, 17(4), 463–496.

Plaut, D. C., Nowlan, S., & Hinton, G. E. (1986). Experiments on learning by back-propagation (Tech. Rep.
No. CMU-CS-86-126.) Department of Computer Science, Carnegie-Mellon University.

Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. E. (1986). Parallel distributed models
of schemata and sequential thought processes. In D. E. Rumelhart, J. L. McClelland, & the PDP Re-
search Group (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition.
Vol. 2: Psychological and Biological Models (pp. 7–57). Cambridge, MA: MIT Press.

van Casteren, M., & Davis, M. (2007). Match: A program to assist in matching the conditions of factorial
experiments. Behavior Research Methods, 39(4), 973–978.


